
Detecting Stack Based kernel Information Leaks.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo
Instituto de Automática e Informática Industrial

Universitat Politècnica de València, Spain
{speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es

July, 2014

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 1 / 18



Motivation

Objective Detection of infoleak vulnerabilities to harden against kernel attacks.
Why? Ḃecause infoleaks lead to bypass kernel protection mechanism.

Linux Attacks

Linux has become an interesting target for attackers.
Attack complexity increased by protection mechanisms: StackGuard, ASLR, DEP [8, 25, 6].

Kerneland Attacks

Attacks have shifted from userland to the Linux kernel.
Kernel attacks require high reliability (failure leads to system crash).
Attack reliability is achieved by the information gathering stage.

Infoleak Vulnerabilities

Infoleaks vulnerabilities lead to build reliable kernel attacks [20, stackjacking]

Leak pointers/addresses to find memory layout: Defeat ASLR.
Leak stack contents to find stack canary, return addresses: Defeat StackGuard.
Leak of keys and sensitive kernel data.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 2 / 18



Analysis of the Kernel Vulnerabilities
A look at reported kernel vulnerabilities during 2011 [4] reveals that:

In table 1 Infoleak vulnerabilities have a high occurrence rate.

Specifically infoleaks due to uninitialised memory have the highest occurrence.

This motivates us to focus on kernel infoleaks due to uninitialised memory.

Vulnerability/Exploit mem. corruption policy violation dos info. disclosure

Missing pointer check 6 0 1 2

Missing permission check 0 15 3 0

Buffer overflow 13 1 1 2

Integer overflow 12 0 5 3

Uninitialized data 0 0 1 28

Null dereference 0 0 20 0

Divide by zero 0 0 4 0

Infinite loop 0 0 3 0

Data race / deadlock 1 0 7 0

Memory mismanagement 0 0 10 0

Miscellaneous 0 0 5 2

Total 32 16 60 37

Table: Reported kernel vulnerabilities during 2011. Data from H. Chen study [4].

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 3 / 18



Outline

1. Motivation

Analysis of Kernel Vulnerabilities

2. Analysis of the Infoleaks Vulnerabilities

Infoleak vulnerabilities through example CVE-2014-1739
Infoleak Classification: Definition, Causes, Sources and Targets.

3. Infoleak Detection Technique

Infoleak Vulnerability Model, Static Analysis and Filtering

4. Evaluation of Infoleak Detection

Existing Infoleak Detection
Discovery of New Infoleaks

5. Applications and Limitations

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 4 / 18



Infoleak Vulnerabilities through Example: CVE-2014-1739

CVE-2014-1739 is one of the infoleaks detected using the technique discussed here.

Impact: A local user can read 200 bytes from the kernel process stack.
Affected version: Linux Kernel media subsystem from v2.6.38 ahead (3 years).
Affected systems: Android phones and servers setups using affected versions.
Attack: Read memory contents from kernel process stack offset controlling stack depth.
Reported: April, 2014

1 static long media_device_enum_entities(struct media_device *mdev,
2 struct media_entity *ent;
3 struct media_entity_driversesc u_ent; [3]
4
5 + memset(&u_ent, 0, sizeof(u_ent)); [5]
6 // ...
7 if (copy_to_user(uent, &u_ent, sizeof(u_ent))) [7]
8 return -EFAULT;
9 return 0;

Listing 1: CVE-2014-1739 code from drivers/media/media-device.c

CVE-2014-1739 Infoleak Vulnerability Description

At line 3 of listing 1 shows the u_ent local variable is declared without explicit initialisation.
The u_ent memory is left uninitialised containing the data already present on the stack.
At line 7 of listing 1 u_ent is copied to user space through the copy_to_user(). That allows
an attacker to read the memory contents of the kernel stack.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 5 / 18

http://www.google.com/?q=CVE-2014-1739
http://www.google.com/?q=CVE-2014-1739
http://www.google.com/?q=CVE-2014-1739


Infoleak Vulnerabilities: Definition
Definition Infoleaks [5] are the consequence of other kinds of vulnerabilities that lead to disclose
the memory layout or contents of the running program.

(2B) Infoleak kernel read missing field initialise by user process

struct in userspace:struct in kernelspace:

(2A) Infoleak kernel read from padding hole by user process

struct in userspace:struct in kernelspace:

field1

field2

field3

field1

field2

field3

copy_to_user()

field1

field2 pad

field3

field1

field2 pad

field3

copy_to_user()

Figure: Directions of data flow in kernel information leaks.

The figure 1 shows a write from a kernel data source to a user data sink that results in an
infoleak due to uninitialised memory.

Figure 1A: uninitialised memory in compiler padding holes.
Figure 1B: uninitialised memory in missing fields initialisation.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 6 / 18



Classification of Infoleak Vulnerabilities
Our Objective: Stack based infoleaks of kernel code due to compiler alignment holes

Infoleak
Vulnerabilties

Bug Causes

Data Sources

Data Sinks

Targets

Missing data initialisation

Missing checks on user reads

Other bug classes

Exceptions

Stack based

Heap based

Kernel Segment based

User system calls

Kernel Code

Application Code

Hypervisor Code

Compiler alignment pad holes

Missing fields initialisation

Implicit Compiler initialisation

Figure: Identification and Classification of Infoleak vulnerabilities.S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 7 / 18



Infoleak Analysis: Bug Causes

Infoleaks are the consequence of other kinds of vulnerabilities that lead to disclose the memory
layout or contents of the running program. This analyses the causes of infoleaks.

Compiler padding holes. Compilers align data structures for performance reasons [6], this
leads the compiler to introduce padding holes between structure fields. Depending on the
direction of the information flow, we can identify two situations:

Writes from kernel to user: Results in an infoleak shown in 1, are our case of study.
Writes from user to kernel: Results in a kernel write, and out of scope of our work.

Missing memory initialisation. The contents of local variables declared without explicit
initialization are indeterminate (C99 [14, Sect. 6.7.8/10]). In practice, local variables get
allocated on the stack reusing the memory contents already present on the stack.
Missing checks on user reads. Missing or incorrect checks on buffer bounds (start, size)
when copying data to user enable the user to read memory contents outside of the buffer.
That kind of vulnerability named buffer overreads [11].
Other bug classes leading to infoleaks. Other sources of infoleaks not explored in this
work, are those related to information available in the environment: kptr_restrict

mechanism [18] and the hardware: cache and TLB timing attacks [10]
Exceptions.: An example exception is partial variable initialization as in:
struct Type var = {0} all fields get initialized with zeros (C99 [14, Sect. 6.7.8/19]).

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 8 / 18



Infoleak Analysis: Data Sources

Information leaks disclose kernel memory contents, therefore, depending on the memory section
affected, a leak can disclose different kinds of information. We focus on the three main sources
from where kernel memory is allocated [12].

Data segment. The kernel data segment is the area that contains global kernel variables
fixed during compilation time. A data segment leak can disclose the contents of static
kernel symbols such as configuration variables.
Stack section. The kernel stack is allocated at runtime and its operation is defined by the
kernel C procedure call convention (ABI). Stack content leaks contain valuable
information, as they can reveal return addresses, stack pointer, and other data contained in
the stack; such as function call parameters, passed on through stack on x86-32
architecture. Other data that is kept on the stack are kernel protection mechanism secrets,
such as canary values for StackGuard [8] protection. In addition, with non-randomized
kernel process stacks, the stack layout remains unchanged and provides a predictable stack
layout when the same kernel path is called repeatedly [20].
Heap section. The kernel heap is managed by memory allocators employed by kernel
subsystems when dynamically allocated memory is required. Due to the nature of kernel
allocators, heap leaks can disclose memory around the object being allocated and its nearby
objects, this can include leaks of object the type and contents, i.e., the values of its fields.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 9 / 18



Infoleak Detection Technique

Key idea: Semantic patches matching the infoleak vulnerability model.

(1)
Vulnerability

Model

(2)
Semantic
Patch

(3)
Results
Ranking

(4)
Code
Review

Figure: Infoleak Detection Technique Steps

The main steps of the technique are outlined here:

Step 1: Analysis of the attack and definition of the vulnerability model.
Step 2: Design a semantic patch of the vulnerability model to perform static analysis.
Step 3: Filter and rank the results of static analysis to remove false positives.
Step ??: Review and correct the vulnerabilities detected.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 10 / 18



Infoleak Detection Technique: 1. Vulnerability Model

We analyse infoleaks vulnerabilities in order to model them as a first step towards the detection
of infoleaks. In our model of stack based kernel infoleak vulnerabilities we adopt the notions of
taint analysis [9]. We focus on infoleaks of privileged kernel memory to userland as depicted in
figure 1, and start with the identification of data sources, data sinks, and taint property:

Data Sources: The interesting data sources for our analysis are the uninitialised kernel
stack memory contents. At source code level this are uninitialised local variables declared
on kernel functions.
Data Sinks: The type of data sinks we are interested are those reachable from userland,
these are part of the kernel API exposed through the system call interface. Examples of
these are file-system read() operations these are interesting sinks for our analysis as they
allow data to flow from kernel to user, here we focus on the copy_to_user() calls data sinks.
Taint Property: The taint property we are interested in is the flow of uninitialised data
from the identified kernel space sources to user space sinks.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 11 / 18



Infoleak Detection Technique: 2. Semantic Patch

Based on the vulnerability model developed in our previous analysis, we prepare a semantic patch
[17] to perform control-flow program static analysis to detect vulnerable code sites matching the
vulnerability model. To this end we select Coccinelle [17] open-source developer-friendly static
analysis tool used in open source projects to perform automated API evolutions.

1 handler(...) {

2 <...

3 T ID;

4 ... when != memset(&ID, 0, ...)

5 when != ID = ...

6 * copy_to_user(EV, &ID, EN)

7 ...> }

Listing 2: Semantic patch (SmPL) for stack based infoleak detection (edited to fit)

For our analysis we develop a Coccinelle semantic patch depicted at listing 2 that matches the
infoleak vulnerability model discussed above.

Data Source: The local variable ID of handler() declared at line 3.
Data Sink: The local variable ID is copied to the user pointer EV at line 6.
Taint Property: The property we want to ensure is that memory contents of ID remain
uninitialised, therefore, we restrict to the situations where no memset() or initialisation
operations occur at line 4.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 12 / 18



Infoleak Detection Technique: 3. Ranking

The results of the execution of the semantic patch discussed at the step 2 contain the potential
vulnerabilities ranked according to its likelihood of being a real vulnerability.

The ranking improves the vulnerability detection rate
Reduces the amount of required manual work during code audits.

leaksize(struct) = sizeof (struct)−
∑

field∈struct

sizeof (struct.field) =

{
= 0 No leak.
> 0 Leak.

For each code location matched by the semantic patch, the following fields are extracted from
the match to identify each vulnerability vuln = (function, variable, struct).

The filtering function in equation 3 calculates the size of the infoleak in bytes as the size of
the padding holes in the struct.
The equation 3 determines the relevance of the infoleak and allows to order the results
giving a higher relevance to those leaking more bytes.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 13 / 18



Evaluation of Infoleak Detection: Existing Infoleak Detection

We performed two evaluation approaches of the infoleak detection technique:

Existing Infoleak Detection: Introduce known vulnerabilities to check detection performance
Discovery of New Infoleaks: Evaluate the detection of previously unknown vulnerabilities

Measure/Kernel ver v2.6 v3.0 v3.2 v3.4 v3.8 v3.14

Vulns Detected/Present 13/8 14/8 12/6 12/6 11/4 9/4

True Positive (TPR%) 100.0 100.0 100.0 100.0 100.0 50.0

True Negative (SPC%) 99.2 99.2 99.3 99.3 99.4 99.5

Positive Pred (PPV%) 61.5 57.1 50.0 50.0 36.3 22.2

False Positive (FPR%) 0.8 0.8 0.7 0.7 0.6 0.5

Table: Statistical performance of stack infoleak detection per kernel version.

The table 2 shows the statistical performance measures of the infoleak detection for stack based
kernel infoleaks with leaksize(struct) > 0, i.e., those where the bug cause are compiler compiler
padding holes. The detection performance presents a high sensitivity (TPR) and high specificity
(SPC) both close to 100%, while the false positive rate (FPR) is close to zero. This enables
analysts to perform security code audits to verify and correct the vulnerabilities detected.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 14 / 18



Evaluation of Infoleak Detection: Discovery of Infoleaks

For evaluation in real world we applied our detection technique to the Linux kernel v3.12.

As a result five new Infoleak vulnerabilities have been uncovered in the Linux kernel:

CVE-2014-1739 200 bytes infoleak on the local media-device system of the kernel
CVE-2014-1446 4 bytes infoleak on the local hamradio driver of the kernel
CVE-2014-1445 2 bytes infoleak on the local wanxl driver of the kernel
CVE-2014-1444 2 bytes infoleak on the local farsync driver of the kernel
CVE-unassigned 2 bytes infoleak on the local synclink driver of the kernel

Systems affected by this CVEs

Most of the above CVE’s have been present for 3-5 years
The wide use of the Linux in embedded systems and consumer appliances: think of
Android, cloud services
This results in large number of running systems affected by these infoleaks.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 15 / 18

https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=b19a47e0603ef89c4179e6e48f6dd1ccc7fa3a7c
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=8e3fbf870481eb53b2d3a322d1fc395ad8b367ed
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=2b13d06c9584b4eb773f1e80bbaedab9a1c344e1
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=96b340406724d87e4621284ebac5e059d67b2194
https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=b19a47e0603ef89c4179e6e48f6dd1ccc7fa3a7c


Applications and Limitations

Applications

Reduce attacks reliability by removing infoleaks
Reduce costs involved with Fixes/Maintenance.
Error detection: the earlier the better.

Application Stages

At Release stage to ensure that less bugs get into the product release.
At Development stage to avoid introducing errors in early development stage.
At Regression stage to ensure a known bug is not re-introduced.

Limitations

Static analysis Vulnerability detection is an undecidable problem [13, Rice’s theorem].
Vulnerabilities not capture by the vulnerability model [21, Fail-safe defaults]

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 16 / 18



Questions

Thanks, Questions?

Slides are online at:
http://speirofr.appspot.com/category/infoleaks/

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 17 / 18

http://speirofr.appspot.com/category/infoleaks/


References
CVE-2010-4525. kvm: x86: zero kvm vcpu events-¿interrupt.pad infoleak.

CVE-2012-0053: Apache information disclosure on response to Bad HTTP Request.

CVE-2013-2147. fix info leak in cciss ioctl32 passthru(). https://git.kernel.org.

Haogang Chen, Yandong Mao, and Xil Wang. Linux kernel vulnerabilities: State-of-the-art defenses and open problems. In APSYS ’11. ACM.

MITRE. Common Weakness Enumeration. CWE-200: Information Exposure.

Intel Corp. IA-32 Architecture Software Developer’s Manual - Volume 3A, 2007.

A. Herrero et al. RT-MOVICAB-IDS: Addressing real-time intrusion detection. FGCS ’13.

C. Cowan et al. StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In USENIX-SEC, 1998.

D. E. Denning et al. Certification of Programs for Secure Information Flow. C. ACM, 1977.

R. Hund et al. Practical Timing Side Channel Attacks Against Kernel Space ASLR. In IEEE SSP, 2013.

R. Strackx et al. Breaking the Memory Secrecy Assumption. EUROSEC ’09.

M. Gorman. Understanding the Linux virtual memory manager. Prentice Hall.

J. E Hopcroft. Introduction to Automata Theory, Languages, and Computation. 2008.

ISO. The ANSI C standard (C99). Technical Report WG14 N1124, ISO/IEC, 1999.

R. Johnson. Finding user/kernel pointer bugs with type inference. USENIX-SEC.

D. Jones. The Trinity system call fuzzer, Linux Kernel, 2013.

J. L. Lawall, J. Brunel, N. Palix, and R. Rydhof Hansen. WYSIWIB: A declarative approach to finding API protocols and bugs in Linux code.

DSN’09, IEEE, 2009.

Linux. kptr restrict: disclosure of kernel pointers. Documentation/sysctl/kernel.txt.

S. Peiró. CVE request: Assorted kernel infoleak security fixes. CVE-2014-1444.

D. Rosenberg and J. Oberheide. Stackjacking: A PaX exploit framework, 2011.

J. Saltzer. The protection of information in computer systems. IEEE Proc., 1975.

Henrik Stuart. Hunting Bugs with Coccinelle. PhD thesis, Diku, 2008.

J. Sánchez, S. Peiró, M. Masmano, J. Simó, and P. Balbastre. Linux porting to the XtratuM Hypervisor for x86 processors. In 14th Real Time

Linux Workshop, 2012.

A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 3rd edition, 2007.

PAX Team. Address Space Layout Randomization (ASLR). 2001.

Linus Torvalds. Sparse: A semantic parser for C, 2006. http://sparse.wiki.kernel.org.

S. Peiró, M. Muñoz, M. Masmano, A. Crespo Instituto de Automática e Informática Industrial Universitat Politècnica de València, Spain {speiro, mmuñoz, mmasmano, acrespo}@ai2.upv.es ()Detecting Stack Based kernel Information Leaks. July, 2014 18 / 18

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=58f09e00ae095e46ef9edfcf3a5fd9ccdfad065e
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/sysctl/kernel.txt
http://www.openwall.com/lists/oss-security/2014/01/15/3
http://sparse.wiki.kernel.org

	Motivation
	Analysis of Kernel Vulnerabilities

	Analysis of the Infoleak Vulnerabilities
	Infoleak Vulnerabilities through Example: CVE-2014-1739
	Infoleak Vulnerabilities: Definition
	Classification of Infoleak Vulnerabilities
	Infoleak Analysis: Bug Causes
	Infoleak Analysis: Data Sources

	Infoleak Detection Technique
	Infoleak Detection Technique: 1. Vulnerability Model
	Infoleak Detection Technique: 2. Semantic Patch
	Infoleak Detection Technique: 3. Ranking

	Evaluation of Infoleak Detection
	Evaluation of Infoleak Detection: Existing Infoleak Detection
	Evaluation of Infoleak Detection: Discovery of Infoleaks

	Applications and Limitations

