
Inferno DS : Inferno port to the Nintendo DS

Salva Peiró
Valencia, Spain

saoret.one@gmail.com

September 14, 2008

Abstract

This document describes the work performed in the Inferno DS port.

It is organised as follows: starts with the background and the motivation for this work,
continues a DS hardware overview, and then discusses the development process, focusing
on the setup and development of dis applications running on the DS. At the end the
conclusions and future work are presented.

1. Background

The DS [1] native port of Inferno [2] was started by Noah Evans for GSoC 2007 [3], at the the
end of the GSoC the port was starting to be usable under the no$gba [4] emulator where it
was possible to interact with Inferno's window manager: wm(1) 1 using the touch screen, but
when running on the �real� DS touch wasn't working.

In spite of this all the basic functionality required to develop; like the ability to debug using the
print statement had already been added, also emulators are of great help to save test time.

1.1. Motivation

Besides sharing the same motivation stated by Noah Evans on his GSoC 2007 application [3],
there where a few more reasons to prefer a native port:

1. After checking that emu(1) on DSLinux [5] was not viable as when running with graphics
the program crashed due to out of memory errors. There was the curiosity about the
bene�ts of a native port, both in development and use.

2. Overcome limitations of some homebrew programs: like no multi-tasking and the bene�ts
of having a coherent system and with a standard set of tools.

3. Have a �real� testbed for limbo applications, which could bene�t applications like those
developed in the inferno-lab [6].

2. DS Overview

What follows is a small overview of the Nintendo DS's hardware organized in three subsections:
the system processors, it's inter-communication mechanisms, and last the built-in devices (and
expansions).

2.1. Processors

The DS has two 32 bits ARM [7] processors, one more powerful ARM946E-S @ 66MHz which is
in charge of the video and performs the main computations, and another ARM7TDMI @ 33MHz
which acts as a slave to deal with the remaining devices: wireless, audio, touch, wireless, power
management, etc.

The system is shipped with the following internal memory:

1 the notation page(section), refers to Inferno manual pages [14]

• 4096KB Main ARM9 RAM

• 96KB Main ARM7 WRAM (64Kb + 32K mappable to NDS7 or NDS9)

• 60KB TCM/Cache (TCM: 16K Data, 32K Code) (Cache: 4K Data, 8K Code)

• 656KB Video RAM (allocateable as BG/OBJ/2D/3D/Palette/Texture/WRAM memory)

• 256KB Firmware FLASH (512KB in iQue variant)

• 36KB BIOS ROM (4K NDS9, 16K NDS7, 16K GBA)

For more details see [8][GBATEK, NDS Overview].

2.2. Communication

Processor communication in the DS can be performed using this methods, together with their
combinations:

• Shared memory: The 4Mb of ARM9 RAM starting at 0x02000000, can be shared by
both processors, it's important to note that one of the cpus can be given priority (using
the EXMEMREG register) over the other when concurrently accessing the memory.

• Hardware �fos: The DS �fo controller allows receiving/sending of 32 bit values from/to
each cpu. This can be done in a full-duplex manner, where each cpu has a destination
queue which stores the values sent by the other cpu. Noti�cation of activity in the queues
is performed through IRQ's to the respective cpu.

This mechanism is crucial as it allows sending messages to request actions, this is used
for example to read/write the RTC, obtaining the touch coordinates, perform wi� tasks
and request audio samples to be played or recorded to the ARM7 cpu.

• Sync interrupt: The Sync IRQ is a simple mechanism which allows one cpu (local) to
generate an IRQ to the other (remote) cpu, this can be use for example for emulating
wi� rx activity as the ARM7 detects when a packet has been received and informs the
ARM9 using Sync.

Given that accessing shared memory generates wait states to the cpu with less priority, it must
be used with care, one approach which works well is using it in combination with �fos, by
passing �fo messages with pointers to shared memory. This is analog to the function call by
value or by reference.

See [8][GBATEK, DS Inter Process Communication (IPC)] for a more detailed description.

2.3. Devices

The system is has the following built-in devices:

• Video: There're two LCD screens (each 256x192 pixel, 3 inch, 18bit color depth, back-
light), each of the screens has a dedicated 2D video engine, plus one 3D video engine
which can be assigned to each of the screens.

• Sound: There're 16 sound channels (16x PCM8/PCM16/IMA-ADPCM, 6x PSG-Wave,
2x PSG-Noise), output can be directed either to: two built-in stereo speakers, or to a
headphones socket, while input can come either from: a built-in microphone, or micro-
phone socket.

• Controls: Interacting with the DS is achieved through a gamepad and a touchscreen: the
gamepad provides 4 direction keys plus 8 buttons, while the touchscreen on the lower
LCD screen can be used as a pointing device.

• Networking: Wi� IEEE802.11b, networking is provided by the RF2958 (aka RF9008) chip
from RFMD. The main drawback of wi�, is that there is no documentation about it's
interfacing and programming, instead all the code, information known has been reverse
engineered. All the information is gathered in [8][GBATEK, DS Wireless Communications]
and also in the dswi� project and DSLinux [5]

• Specials: Some aditional devices include: Built-in Real Time Clock, Power Managment
Device Hardware divide and square root functions and CP15 System Control Coprocessor
(cache, tcm, pu, bist, etc.)

• External Memory: There're two available slots: NDS slot (slot-1) and GBA slot (slot-2)
which are the prefered way for plugging expansion cards and other devices. Their most
common usage is to provide storage support to sd/tf cards. But there're also devices like
Dserial, CPLDStarter or Xport [9], which provide uart, midi, usb and standard digital
i/o interfaces together with CPLDs or FPGAs.

see [8][GBATEK, NDS Hardware Programming].

3. DS Port

This section describes the idiosyncrasies of the DS port, in particular those related with the
setup, kernel and application development.

3.1. Environment

The development environment is the default shipped with Inferno. The compiler used is
5{a,c,l} compiler which forms part of the Inferno and Plan 9 compiler suite [11]. It is
used to build the ARM [12] binaries for both cpus: ARM7, ARM9, together with the com-
panion tools: mk, acid, ar, nm, size, etc. which are used for building, debugging and
examining the resulting binaries.

The only special tool required is ndstool [10] which is used to generate a bootable image to be
launched by the NDS loader running on the DS, for this purpose the image contains everything
required to describe how to boot the code, this includes: the ARM7 and ARM9 binaries and
their correspoding load addresses, entrypoints, etc.

3.2. Communication: Fifos IPC

As it's been explained the DS system is composed by two cpus, this poses a problem when
sharing the hardware devices between cpus, to eliminate this problem the devices are assigned
to one cpu or the other, and example of this is the SPI (Serial Peripheral Interface) owned
by the ARM7, there are some (a lot, really) of devices accessed through SPI: touch, wi�, rtc,
�rmware, power management, audio, ... The same happens with the lcd hardware which is
owned by the ARM9, as a consequence of this it's impossible to use the print statement from
ARM7.

To overcome this problems the adopted solution has been to use the available communication
mechanism: �fos and shared memory, to provide an interface which allows communication of
both cpus, and by extension to provide access to devices not owned by the cpu.

The interface is analog to function calls, that is each message is associated with a function
which performs the work requested by the message. For the sake of simplicity the function and
it's arguments are encoded into a 32 bit message, where the message encoding is as follows:

msg[32] := type[2] | subtype[4] | data[26],
field[n] refers to a field of n bits of length

type[2] := 00: System, 01: Wifi, 10: Audio, 11: reserved.
subtype[4] := 2^4 = 16 type specific sub-messages.
data[26] := data/parameters field of the message.

This structure has to accomodate all the required information shared by both cpus, thus what
follows is some reasoning behind the message encoding, basically it's main purpose is to have
a readable and easy to understand and manipulate notation.

type[2] is used to have messages organised in 4 bit types: System, Wi�, Audio and a Reserved
type.

subtype[4] is used to further cualify the message type.

For example, given message type[2] = Wifi there're several actions to be performed
like:

• initialising the wi� controller

• preparing for sending/receiving a packet

• setting the wi� authentication parameters

• . . .

these can be encoded using the 16 available message subtype[4]'s.

data[26] the lenght of the data �eld is not choosen 'at random', instead it's choosed as the
minimum size which can allow passing of ARM9 RAM addresses @ 0x02000000, 4Mb.
This allows passing of �pointers�, which can hold all the required arguments. Note: this
will have to be revised when using memory expansions @ 0x08000000, 16 Mb

3.2.1. Fifos: send a msg

Here's an example extracted from devrtc.c executed by the ARM9 side to read the ARM7 RTC.

int
nbfifoput(ulong cmd, ulong data)
{

if(FIFOREG->ctl & FifoTfull)
return 0;

FIFOREG->send = (data<<Fcmdlen|cmd);
return 1;

}
...
ulong secs;
nbfifoput(F9TSystem|F9Sysrrtc, (ulong)(&secs));

Moreover as the �fos hardware and the implemented interface are simetric, the same code can
be used by the the ARM7 to sprint strings and send them to the ARM9, which will be able to
output them to the LCD using print:

int
print(char *fmt, ...)
{

int n;
va_list ap;
char *sd = SData;

memset((void*)s, '\0', PRINTSIZE);

va_start(ap, fmt);
n = vsprint(s, fmt, ap);
va_end(ap);

while(!nbfifoput(F7print, (ulong)s));
return n;

}
...
print("batt %d aux %d temp %d\n", IPC->batt, IPC->aux, IPC->temp);

3.2.2. Fifos: receive a msg

static void
fifotxintr(Ureg*, void*)
{

if(FIFOREG->ctl & FifoTfull)
return;

wakeup(&putr);
intrclear(FSENDbit, 0);

}

static void
fiforxintr(Ureg*, void*)
{

ulong v;
while(!(FIFOREG->ctl & FifoRempty)) {

v = FIFOREG->recv;
fiforecv(v);

}
intrclear(FRECVbit, 0);

}

static void
fifoinit(void)
{

FIFOREG->ctl = (FifoTirq|FifoRirq|Fifoenable|FifoTflush);
intrenable(0, FSENDbit, fifotxintr, nil, "txintr");
intrenable(0, FRECVbit, fiforxintr, nil, "rxintr");

}

Here fiforxintr is executed when an message receive IRQ is triggered, then the �fo is ex-
amined to read the message, which is passed to fiforecv which knows the encoding of the
messages, and invokes the corresponding function associated with each message.

3.3. DS kernels

The DS port shares a lot of similarities with the other Inferno's ARM ports, which have been
used both as a source of inspiration and ideas. In particular with the Ipaq port as the platform is
somehow similar to the DS: as both have touch screens, storage, audio and wireless networking,
although the underlying hardware is completely di�erent.

Still there're certain limitations inherent to the DS that make it look a small brother: like
the 66 Mhz CPU clock, the 4 Mb of available RAM, small lcd displays and reduced wireless
capabilties: only wep and open modes at 2.0 Mpbs, that should be examined once wi� code is
fully working, to check it it a�ects the use of the styx(5) protocol to access remote �lesystems.

Another interesting aspect is how the Inferno kernel running on the ARM9 provides devices like
pointer(3), ether(3), rtc(3), audio(3), etc. which perform their work by requesting it to the
ARM7 using the Fifo IPC seen above.

3.3.1. ARM7

While the ARM9 cpu has 4 Mb of RAM, which permits it to run an Inferno kernel, the smaller
ARM7 has only access to 64 Kb or EWRAM (exclusive RAM).

Given this memory limitation the ARM7 can't run a Inferno kernel, but as it's been discussed
above the ARM7 is required in order to access the devices owned by the ARM7. For this
purpose runs speci�c code which basically manages the needed hardware devices and provides
the �fo interface comented above in order the ARM9 can use it.

3.4. Application

At the application level the DS has some features that make it interesting:

The input interface: buttons and touchpad with the graphical output: two small lcd displays
which present a challenge to developing applications for it.

This has implications in the graphical user interface to use, which is being object of experimen-
tation in the inferno-lab [6], to �nd out how to best use the available lcd screens with the lower
touch screen.

This opens �eld for interesting applications, which combine graphics, touch, networking and
audio. This can include games, VoIP, music, midi synths toghether with other common uses,
like: connecting/managing remote systems with cpu(1), or accessing to remote resources using
the styx(5) protocol.

3.4.1. Development

With a standard Inferno distribution placed on a sd/tf card, it's seamlessly to setup Inferno
running on the Nintendo DS, as it only requires an Inferno kernel which can be distributed as
.nds image available for download from the Inferno DS project site [1]. This kernel can be
transfered to a sd/tf card, to be booted by the NDS loader.

This kernel provides access to the underlying hardware through devices dev(10), this is: through
a �lesystem interface which is used by the applications to make use of the kernel services:
draw(3), pointer(3), ether(3), audio(3) and a speci�c devdldi which provides storage access
to sd/tf cards.

With all this, the development of applications consists of the following steps:

1. setup Inferno emu on a development host: where the applications can be coded, compiled
and tested, see [13] for more details.

2. test applications on a DS emulator (optional): like no$gba [4] or desmume.

3. transfer applications (.dis �les) to sd/tf card: to be launched after booting the Inferno
DS kernel.

4. Conclusions

The main conclusion extracted during the development of the port has been how the careful
design and implementation of the whole Inferno system have made the task of developing this
port easier.

This has had also an e�ect on the tasks of locating and �xing errors, and introducing new
functionality like input, storage, networking and audio which have become easier.

The bene�ts of the Inferno design [2] will be also noticed when developing limbo applications
for the ds, as this area has been less used/tested during the development of the port.

5. Future work

As there're always things to do or rework this can be regarded as a work in progress, in particular
the graphics side and audio are being reworked one to take advantage of both lcd screens under
Inferno, and the other to improve audio playing and recording quality.

Another area that needs atention is the wireless networking, whose code needs to be tested and
�nished, as this will open �eld by communicating it with other devices, this will allow to boot
remote kernels, access �lesystems provided by a emu(1) instance running hosted, etc.

As things are being polished the work to be done will move from the kernel side to the applica-
tions side, as it's already happening with the inferno-lab [6] experiments with the Mux interface
and with the quong/hexinput keyboard to ease the interaction with the system.

References

[1] Noah Evans, Salva Peiró, Mechiel Lukkien �Inferno DS: Native Inferno Kernel for the
Nintendo DS�. http://code.google.com/p/inferno-ds/.

[2] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard Trickey, Phil Win-
terbottom �The Inferno Operating System�. Computing Science Research Center, Lucent
Technologies, Bell Labs, Murray Hill, New Jersey USA http://www.vitanuova.com/inferno.
http://code.google.com/p/inferno-os/.

[3] Noah Evans, mentored by Charles Forsyth, �Inferno Port to the Nintendo DS�. Google
Summer of Code 2007, http://code.google.com/soc/2007/p9/about.html.

[4] Martin Korth, �no$gba emulator debugger version�. http://nocash.emubase.de/gba-
dev.htm.

[5] Pepsiman, Amadeus and others, �DSLinux: port of uCLinux to the Nintendo DS�.
http://www.dslinux.org.

[6] Caerwyn Jones & co, �Inferno Programmers Notebook�. http://caerwyn.com/ipn,
http://code.google.com/p/inferno-lab

[7] ARM (Advanced Risc Machines), �ARM7TDMI (rev r4p3) Technical Reference Manual�.
ARM Limited, http://www.arm.com/documentation/ARMProcessorCores.

[8] Martin Korth, �GBATEK: Gameboy Advance / Nintendo DS Technical Info�.
http://nocash.emubase.de/gbatek.txt. http://nocash.emubase.de/gbatek.htm.

[9] Charmed Labs, �Xport�. http://www.drunkencoders.org/reviews.php.

[10] DarkFader, natrium42, WinterMute, �ndstool Devkitpro: toolchains for homebrew game
development�. http://www.devkitpro.org/

[11] Ken Thompson, �Plan 9 C Compilers�. Bell Laboratories, Murray Hill, New Jersey 07974,
USA. http://plan9.bell-labs.com/sys/doc/compiler.html.

[12] David Seal, �The ARM Architecture Reference Manual�, 2nd edition. Addison-Wesley
Longman Publishing Co. http://www.arm.com/documentation/books.html.

[13] Phillip Stanley-Marbell, �Inferno Programming with Limbo�. John Wiley & Sons 2003,
http://www.gemusehaken.org/ipwl/.

[14] �The Inferno Manual�. http://www.vitanuova.com/inferno/man/.

http://code.google.com/p/inferno-ds/
http://www.vitanuova.com/inferno
http://code.google.com/p/inferno-os/
http://code.google.com/soc/2007/p9/about.html
http://nocash.emubase.de/gba-dev.htm
http://nocash.emubase.de/gba-dev.htm
http://www.dslinux.org
http://caerwyn.com/ipn
http://code.google.com/p/inferno-lab
http://www.arm.com/documentation/ARMProcessorCores
http://nocash.emubase.de/gbatek.txt
http://nocash.emubase.de/gbatek.htm
http://www.drunkencoders.org/reviews.php
http://www.devkitpro.org/
http://plan9.bell-labs.com/sys/doc/compiler.html
http://www.arm.com/documentation/books.html
http://www.gemusehaken.org/ipwl/
http://www.vitanuova.com/inferno/man/

	Background
	Motivation

	DS Overview
	Processors
	Communication
	Devices

	DS Port
	Environment
	Communication: Fifos IPC
	Fifos: send a msg
	Fifos: receive a msg

	DS kernels
	ARM7

	Application
	Development

	Conclusions
	Future work

