
IO Virtualisation in a Partitioned System

M. Masmano, S. Peiró, J. Sánchez , J. Simó, A. Crespo
Instituto de Automatica e Informatica Industrial

Universidad Politecnica de Valencia, Spain
{mmasmano,speiro,jsanchez,jsimo,acrespo}@ai2.upv.es

Abstract

Partitioned systems permit to isolate in partitions sev-
eral applications with different security levels and/or crit-
icality. Hypervisor technology provides virtual machines
to execute partitions under two basic principles: space
and time isolation. This view is complemented with the
”dedicated devices” technique that assigns devices exclu-
sively to a partition. However in case of shared devices
a partition has to provide a device or IO virtualisation
to the other partitions, referred as the ”I/O Server” ap-
proach. We present a solution for device virtualisation on
the XtratuM hypervisor which has been specifically de-
signed for critical embedded systems. The approach is in
the scope of the Open Secure Vehicular Platform project.
Such system will support different types of partitions, from
real time constrained to non-trusted user partitions run-
ning general purpose operating systems.

1. Introduction

Partitioned software architectures can represent the fu-
ture of secure systems. They have evolved to fulfil secu-
rity and avionics requirements where predictability is ex-
tremely important. The separation kernel proposed in [3]
established a combination of hardware and software to al-
low multiple functions to be performed on a common set
of physical resources without interference. It is precisely
XtratuM the selected kernel to serve as the base execution
environment for the OVERSEE partitioned system.

The Open Vehicular Secure Platform [5] (or OVER-
SEE, for short) is intended to serve as a single access
point to vehicle networks. It will provide a protected, stan-
dardized in-vehicle runtime environment and on-board ac-
cess and communication point. Applications for this plat-
form include, between others, positioning systems, stolen
vehicle tracking, traffic information, web browsing, etc.
Ultimately, OVERSEE aims to create an open software
platform for which everyone can develop applications and
download them. Of course, this platform must ensure that
the applications cannot harm each other and, especially,
internal in-vehicle software applications. The heteroge-
neous nature of the applications being executed under

OVERSEE makes XtratuM system partitioning the best
way to isolate and protect applications from each other.
Finally, for this system, the chosen target hardware is the
Intel Atom architecture, which is the Intel architecture for
embedded systems.

XtratuM ensures temporal and spatial isolation of the
applications that run over it. This applications may vary
from bare-C applications to entire operating systems as,
for example, Linux. Each of this applications is referred
to as a partition or guest. On this paper, we will pay
special attention to Linux guests. The use of Linux as a
guest to run general purpose applications is very interest-
ing; thanks to the development efforts made by the open
source community, Linux offers a vast variety of device
drivers, as well as many other software mechanisms (i.e.
a TCP/IP stack), which reduce implementation burden of
software projects.

With the expansion of hypervisor technology, Linux
has begun to host extensions for system virtualisation.
Linux kernel supports at least 8 distinct virtualisation sys-
tems, being Xen [2], KVM [4] or Lguest [7] among them,
without taking into account the relatively new XtratuM
hypervisor. With such large variety of virtualisation sys-
tems, a new standard has appeared to fulfil the needs of
device virtualisation, which until now had to be imple-
mented by each hypervisor. This standard is known as
Virtio [8]: “a series of efficient well-maintained Linux
drivers which can be adapted for various hypervisor im-
plementations”. As will be explained on section , the spe-
cial features of XtratuM needs Virtio to be modified in a
different way than other virtualisation solutions.

Section 2 outlines the design and requirements of the
OVERSEE platform. Section 3 presents the architecture
and main design criteria of the XtratuM hypervisor. Sec-
tion 4 introduces the para-virtualisation of the Linux op-
erating system to run on the XtratuM hypervisor. Sec-
tion 5 presents the approach of the Virtio to achieve IO
device virtualisation. Section 6 analyses the Virtio design
assumptions and how they are met on the XtratuM hyper-
visor. Finally some conclusions are enumerated.



2. OVERSEE Platform Overview

The figure 1 presents the architecture of OVERSEE.
Starting at the bottom are the devices provided by the
hardware platform, running on top of the hardware is the
virtualisation layer provided by the XtratuM hypervisor,
the XtratuM hypervisor isolates each of the partitions into
its own virtual machine. Special focus is placed on the
system partitions, these system partitions are an integral
part of OVERSEE in charge of offering generic services
and facilities for the applications running within the con-
figured partitions and clusters.

Figure 1. OVERSEE platform architecture.

The system partitions shown in figure 1 reflect the de-
sign decision to place additional platform functionality
(e.g., communication management and security services)
in additional partitions instead of integrating them into the
virtualisation subsystem. The main reasons for this deci-
sion are:

• The code size of the virtualisation subsystem should
be kept very small due to the needed efficiency of
frequent context switches.

• The dependability of the platform and the security
of the platform will be improved since the device
drivers and management components are running in
an isolated partition.

• Further functionality like additional communication
services could easily be added to the OVERSEE plat-
form since this only means to modify the concerned
system partition while the core virtualisation system
will stay unchanged.

2.1. Secure I/O Partition
Within the secure I/O partition most of the drivers

for the connectivity modules will be handled. There-
fore, this partition together with the internal communi-
cation resources of XtratuM is responsible for the provi-
sion of communication connections for the partitions. Se-
cure means that the access to the different communication
means will be restricted inside the secure I/O partition.

2.2. System Partition
The system partition is responsible for the manage-

ment of runtime environments within XtratuM, so start-
ing, stopping and monitoring of the application partitions

and clusters. Furthermore, the components to provide ad-
ditional services of the OVERSEE platform (e.g., remote
diagnosis) will be placed in this partition.

2.3. HMI, Audio Partition
The management of HMI and Audio devices is no in-

tegral part of the OVERSEE platform. However for most
of the use cases which are applicable for OVERSEE inter-
action with the driver or other occupants of the vehicle is
required is is implemented as proof of concept.

3. XtratuM Overview

XtratuM [3] is a bare-metal hypervisor with extended
capabilities for highly critical real-time systems. The de-
sign of XtratuM has tried to apply the philosophy of the
ARINC-653 standard [1] (despite not being ARINC-653
compliant). This standard is used to achieve strong isola-
tion between running guests, so it has rigid policies about
resource management.

On the time domain, XtratuM allocates CPU to parti-
tions following a plan which is defined at configuration
time, i.e., it uses a cyclic scheduler. Dynamic sched-
ulers are avoided when systems under control are critical
real-time. This ensures a predictable behaviour as well as
scheduler robustness against system temporary overloads.
On the other hand, this scheme narrows maximum band-
width of non real-time guests, which may need more re-
laxed scheduling policies. As explained on section 6, im-
plementation of virtual devices have to take into account
this fact in order to optimize throughput.

Besides CPU management, XtratuM isolates spatially
the partitions by defining a set of accessible physical
memory areas for each one. Also, physical memory areas
can be defined as shared, thus being accessible by several
guests. This is precisely the chosen mechanism for driver
virtualisation.

3.1. XtratuM Architecture
XtratuM is in charge of virtualisation services to parti-

tions. It is executed in supervisor processor mode and vir-
tualises the cpu, memory, interrupts and some specific pe-
ripherals. The figure 2 shows the complete system archi-
tecture. The internal XtratuM architecture includes: mem-
ory management, scheduling (fixed cyclic scheduling), in-
terrupt management, clock and timers management, parti-
tion communication management (ARINC 653 communi-
cation model), health monitoring and tracing facilities. At
the hypervisor level three layers can be identified:

• Hardware-dependent layer: It implements the set
of drivers required to manage the strictly necessary
hardware: processor, interrupts, hardware clocks,
hardware timers, paging, etc. This layer is iso-
lated from the rest through the Hardware Abstraction
Layer (HAL). Thus, the HAL hides the complexity
of the underlying hardware by offering a high-level
abstraction.



Figure 2. XtratuM architecture.

• Internal-service layer: These services are not avail-
able to the partitions. This layer includes a minimal
C library which provides the strictly required set of
standard C functions (e.g. strcpy, memcpy, sprintf)
and a bundle of data structures. The system boot is
also part of the internal services.

• Virtualisation-service layer: It provides the services
required to support the para-virtualisation services,
which are provided via the hypercall mechanism to
partitions. Some of these services are also used from
other XtratuM modules.

3.2. XtratuM Design Principles
Bare-metal hypervisor technology is the most promis-

ing approach to achieve the best performance which is a
major criteria to design and implement critical real-time
systems. On the other hand, para-virtualisation technique
jointly with dedicated devices permits to reduce drasti-
cally the code of the virtualisation layer.

In order to design a hypervisor for safety critical sys-
tems, the following design criteria have to be considered:

• Strong spatial isolation: the hypervisor is executed in
privilege (supervisor) processor mode whereas parti-
tions are executed in user one. Partitions are allo-
cated in independent physical memory addresses. A
partition only can access to its memory areas.

• Strong temporal isolation: the hypervisor enforces
the temporal isolation by using a fixed cyclic sched-
uler to execute partitions.

• Partition management: the partitions are executed in
user mode, thus guaranteeing that they have not ac-
cess to processor control registers. The hypervisor
defines a set of services that allow system partitions
to start, reset, reboot and stop partitions.

• System partitions: some partitions can use special
services provided by the hypervisor. These services
include: partition management, access to system
logs, etc.

• Robust communication mechanisms: the partitions
are able to communicate with other partitions by us-
ing specific services provided by the hypervisor. The

basic mechanism provided to the partitions is the
port-based communication. The hypervisor imple-
ments the link (channel) between two ports or more
ports. Two types of ports are provided: sampling a
queuing as defined in the ARINC-653 standard [1].

• Interrupt Model: the hypervisor provides an inter-
rupt model to the partitions. Partitions can not in-
teract with native traps. All the interrupts are de-
tected handled by the hypervisor and propagated to
the partitions according to the system configuration
file (XM CF).

• Fault management model: faults are detected and
handled by the hypervisor. The detection of a fault
can be the occurrence of a system trap or the occur-
rence of an event generated by the hypervisor code.
The health monitor module in the hypervisor imple-
ments the fault management model.

• Non-preemtable: in order to reduce the design com-
plexity and increase the reliability of the imple-
mentation, the hypervisor is designed to be non-
preemtable.

• Resource allocation: fine grain hardware resource al-
location is specified in the system configuration file
(XM CF). This configuration permits to assign sys-
tem resources (memory, I/O registers, devices, mem-
ory, etc.) to the partitions.

• Minimal entry points: the hypervisor has to clearly
identify the execution paths and the entry points.

• Small: The validation and formal verification com-
plexity increases with the number of lines of code.
The hypervisor code shall provide the minimum ser-
vices in order to be as minimal as possible.

• Deterministic hypercalls: All services (hypercalls)
shall be deterministic and fast.

3.3. Interrupt Model
Different manufacturers use terms like exceptions,

faults, aborts, traps, and interrupts to describe the proces-
sor mechanism to receive a signal indicating the need for
attention. Also, different authors adopt different terms to
their own use. In order to define the interrupt model,
we provide the definition of the terms used in this
work.

A trap is the mechanism provided by the processor to
implement the asynchronous transfer of control. When
a trap occurs, the processor switches to supervisor mode
and unconditionally jumps into a predefined handler.

A software trap is raised by a processor instruction and
it is commonly used to implement the system call mecha-
nism in the operating systems.



Figure 3. Interrupt Model.

An exception is an automatically generated interrupt
that occurs in response to some exceptional condition vio-
lation. It is raised by the processor to inform about a con-
dition that prevents the continuation of the normal execu-
tion sequence. There are basically two kind of exceptions:
those caused by the normal operation of the processor and
those caused by an abnormal situation (like an memory
error).

A hardware interrupt is trap raised due to an external
hardware event (external to the CPU). These interrupts
generally have nothing at all to do with the instructions
currently executing and informs the CPU that a device
needs some attention.

In a partitioned system, as the one depicted in figure 3
the hypervisor (XtratuM) handles these interrupts (native
interrupts) and generates the appropriated virtual inter-
rupts to the partitions (Partition i, j). A partition have to
deal with the following virtual interrupts:

• virtual traps are the traps generated by the hypervi-
sor to the partitions as consequence of a native trap
occurrence.

• virtual exceptions are the exceptions propagated by
the hypervisor to the partitions as consequence of a
native exception occurrence. Not all the native ex-
ceptions are propagated to the partition. For instance,
a memory access error that is generated as conse-
quence of a space isolation violation is handled by
the hypervisor which can perform a halt partition ac-
tion or can generate another different virtual excep-
tion (like memory isolation fault). On the other hand,
a numeric error is propagated directly to the partition.
Virtual exceptions are a superset of the native excep-
tions which include additional exceptions generated
by the hypervisor (virtual processor). Some of them
are: memory isolation error, IO isolation error and
temporal isolation error.

• virtual hardware interrupts are directly generated by
the real or the virtual hardware. The real hardware
corresponds to external devices (dedicated devices
technique) or peripherals and the virtual hardware in-
cludes the different virtual devices associated to the
virtualisation. Some of these virtual devices are:

– Virtual hardware and execution clocks

– Virtual timers based on hardware or execution
clocks.

– New message arrival. The communication
mechanism (channel) implemented by XtratuM
is seen as a hardware device.

– Partition slot execution. In a partitioned system
the partition is aware of the partition schedul-
ing, this interrupt informs to the partition that a
new slot has been scheduled.

Only virtual hardware interrupts can be enabled or dis-
abled by partitions.

Four strategies have been used to prevent partitions to
jeopardise temporal isolation:

• Partitions have no access to the trap table. Thus, par-
titions are unable to install their own trap handlers.
All traps are directly handled by XtratuM and, when
required, propagated to partitions which defines its
own virtual trap table.

• Partitions cannot interact with native traps. Parti-
tions are executed in user mode, thus guaranteeing
that they have not access to control registers.

• A partition can not mask those virtual hardware in-
terrupts not allocated to the partition.

• When a partition is scheduled, all the hardware in-
terrupts associated to other partitions are disabled.
When the partition context switch occurs, the hyper-
visor detects the hardware interrupts pending for the
next partition to be executed and raise them depend-
ing on the partition interrupt mask.

3.4. Temporal Isolation
Temporal isolation refers to the system ability to exe-

cute several executable entities (threads, processes, parti-
tions, etc.) guaranteeing:

• the timing constraints of the executable entities

• the execution of each entity does not depend on the
temporal behaviour of other unrelated entities

The temporal isolation enforcement is achieved at the
first scheduling level (partition scheduling). Partitions are
scheduled according a static schedule (plan). The plan
defines a set of time slots for each partition within a Major
Frame (MAF). The MAF is executed in a repetitive way.

XtratuM implements a static (cyclic) scheduling that
follows the ARINC 653 specification [1] which defines a
general-purpose Application/Executive (APEX) software
interface between the operating system and the application
software. ARINC 653 defines a cyclic scheduling for the
global scheduler and a preemptive fixed priority policy for
the local scheduler.



4. Para-virtualisation of Linux Partitions

XtratuM uses the technique of para-virtualisation.
Therefore, guests have to be modified (i.e. para-
virtualised) in order to not access hardware directly but
use the hypercalls services. Here we focus on guest parti-
tions running the Linux operating system, as it provides
several advantages like drivers and applications which
help to leverage the software implementation burden.
Along with the virtualisation technologies, Linux kernel
has evolved to offer built-in para-virtualisation mecha-
nisms. This has greatly simplified the task of porting
Linux to the XtratuM architecture while enhancing for-
ward compatibility.

4.1. IO Management on a Partitioned System
Intel x86 architecture offers a separate address space

for accessing peripherals. This address space is composed
by ports and can be mapped so that they appear in the
physical memory address space. Partitions can be given
permissions to use some of these ports in order to have
direct access to some peripheral.

When talking about system input and output (I/O) on
partitioned systems, there are two paradigms for device
driver access. The first approach is to leave device man-
agement to the hypervisor. However, this is not a good
approach as, for each device, a driver would have to be
implemented at hypervisor level and, also, XtratuM com-
plexity would grow too much. Thus, only a few simple
drivers (console, UART) have been implemented inside
XtratuM. The second approach is to leave device driver
implementation to partitions themselves. This approach is
more flexible as we can use device drivers already imple-
mented, like those included in the Linux kernel. For this
method to work, guests are given permissions to access
some I/O ports on the configuration step.

By leaving devices to partition control, new problems
arise, related to device management. If a device on the
system is dedicated so that it is mapped to at most one
partition, there is no problem. Nevertheless, when there
is the need for sharing devices between several guests,
special management has to be applied. Operating system
device drivers control mutual exclusion of the threads ac-
cessing the same device, so that input/output transactions
are atomic, thus ensuring a correct operation. However,
there are no mutual exclusion mechanisms on XtratuM, as
this would break partition isolation (partitions may control
the way other partitions are executed).

A proper solution to the device virtualisation problem
is to create a separate secure I/O partition with exclusive
access to devices. This partition virtualises these devices
for each of the user partitions. With these model, the vir-
tual devices on the user partition side will send requests
to the I/O partition for accessing real devices. Underneath
the virtual devices, a software layer will provide the nec-
essary mechanisms for transporting the requests, as the
partitions are spatially isolated. Figures 4 and 6 depict the

model with different detail level.

Figure 4. I/O virtualiation model.

5. Virtio Overview

The VIRTIO specification [9] provides an stable and
efficient mechanism for device virtualisation. Originally
it was designed for providing virtual device I/O to Linux
guests running hosted under virtual environments, where
the hypervisor (host) also happens to be a Linux system.

The Virtio design is logically composed of the three
parts that are required in order to provide a device virtuali-
sation solution; that is: the device model, the driver model
and the transport mechanism used to glue devices and
drivers together:

1. The Virtio device model in 5.1 is provided by the I/O
partition, is in charge of offering a suitable device
abstraction closely resembling a typical hardware de-
vice.

2. The Virtio device drivers in 5.2 is used by the Linux
guest partitions are in charge of managing and ac-
cessing the Virtio devices offered by the I/O parti-
tion.

3. The Virtio transport mechanism in 5.3 is in charge
of providing an efficient mechanism for connecting
both the Virtio devices and drivers.

5.1. Virtio Devices
The Virtio device model is designed with PCI [6] de-

vices virtualisation in mind, that is Virtio devices are very
similar in several aspects to PCI devices. This similarity
can be further explained by examining the typical opera-
tions performed on devices:

1. Device configuration: is performed on a ”configura-
tion memory space” associated to a Virtio device that
contains: IRQ, Status, Device features and Data de-
scriptors information, as it would be found on a PCI
device.



2. Device activity notification: is performed using the
extended IRQ (Interrupts Requests) mechanism pro-
vided by the hypervisor, used by the Virtio device to
requests attention to the guest.

3. Device operations: common device operations as
device data transfers are performed on buffers allo-
cated by the guest and provided to the device (I/O
Partition) which resembles programming of DMA
data transfers.

5.2. Virtio Drivers
The following Virtio drivers are supported on XtratuM

which are available on the guest partitions:

• The virtio net driver implements a virtual network
device that provides TCP/IP communication to the
guest partitions. virtio net provides a virtual Ethernet
network interface card that provides guest partitions
point to point communication with the host partition.
This can be used to perform NAT/filtering to provide
the guests access to Internet.

The chosen architecture for the virtual network can
be seen on figure 5. Each of the guests has its own
eth interface, which is virtually connected to vnetX,
a virtual network interface on the host side. The I/O
partition will act as a router, taking packets from the
virtual networks and possibly routing them to other
guests or the outside world through the real network.

• The virtio block driver implements a virtual block
device that provides storage to the guest partitions.
virtio block allows the guest partitions to have a vir-
tual storage device where a standard Linux distribu-
tion can be installed and used as the root file-system.

• The virtio console driver implements a virtual con-
sole device to access the console of the guest parti-
tions. virtio console is probably not targeted for the
end user, but to developers to perform configuration,
debugging and development tasks through the system
console.

• The virtio rng driver implements a virtual RNG
(Random Number Generator) for the guest partitions.
virtio rng provides a fast RNG to speed-up the secu-
rity operations like: key-generation, authentication
and encryption operations where a fast RNG is re-
quired.

5.3. Virtio Transport
The Virtio Transport Ring is the mechanism used for

exchanging shared buffers between the guest and the host.
The Virtio drivers generate lists of scatter/gather

buffers (or scatterlists). Such lists are the mechanism
used by Linux to deal with the virtual/physical memory
maps. Due to this memory model, even if a buffer looks

Figure 5. Virtual network architecture.

contiguous in the virtual memory map, it may be scat-
tered through several pages of physical memory. Thus, the
Linux kernel offers a mechanism to get all these scattered
buffers from a pointer in virtual memory. Those buffers
are then recovered from the virtio transport ring and sent
to the I/O partition.

6. Virtio on XtratuM Partitions

After providing an overview of Virtio, here we focus
on the task on being able to use Virtio on partitions run-
ning the XtratuM hypervisor. More specifically we con-
sider the case where the partitions are running the para-
virtualised Linux OS.

In first place the Virtio design assumptions are analysed
in subsection 6.1. Next the implementation and modifi-
cations performed to meet the preceding assumptions are
presented in subsection 6.2.

6.1. Virtio Design Assumptions
Virtio introduces some assumptions which hold for

hosted hypervisors (like the Lguest [7] and KVM [4] hy-
pervisors) where the guests are run hosted as user space
processes on top of a general purpose operating system
(Linux).

Instead XtratuM is a native (or bare machine) hyper-
visor thus some of the assumptions that Virtio places on
the underlying hypervisor do not hold in the case of the
XtratuM hypervisor. The following points summarise the
Virtio assumptions that are relevant for the implementa-
tion of Virtio on the XtratuM hypervisor:

Assumption 1 (Hardware device support): The host
supports (drivers) and has direct access to the hardware
devices.

This assumption is not met by the XtratuM hypervisor as
it does not provide drivers for all the hardware supported
by the Linux kernel.

This assumption is solved by providing the I/O parti-
tion as a Linux host partition which has both access to the
physical hardware and drivers support.

Assumption 2 (Shared memory): The host partition has
access to all the memory of the guest partition.



This assumption presents issues with this design, as
XtratuM partitions have strong spatial isolation, there is
no way to access the guest memory, unless explicitly al-
lowed in the XM CF configuration file.

To overcome this problem the guest defines a memory
area for the Virtio device virtualisation in the XM CF con-
figuration file which is shared exclusively with the host
partition.

This provides a level of security by ensuring that no
other guests have access to the data exchanged between
the guest and the host using a Virtio device.

Assumption 3 (Host scheduling): The host operating
system controls scheduling of the guest (”hosted” user
process).

This assumption presents issues with this design, as
XtratuM partitions have strong temporal isolation pro-
vided by the XtratuM fixed cyclic scheduling policy. To
overcome this problem the scheduling of the partitions
must be carefully chosen to achieve a compromise be-
tween the host and the guest performance.

6.2. Virtio Implementation
In order to support Virtio for Linux partitions on the

XtratuM hypervisor, the Linux partitions need to be mod-
ified to make them aware of Virtio devices, this is achieved
by adding a low level virtio back-end.

The Virtio back-end is in charge of the tasks of device
setup and discovery, of Virtio devices and the publishing
and activity notification of Virtio buffers. This operations
rely on the specific mechanisms provided by the hypervi-
sor, which makes the back-end hypervisor dependent and
required on both the host and guest partitions:

Host Virtio back-end:
Provides Virtio virtqueues support to the host
partition, is also in charge of providing devices to the
guest partitions. This is done by setting up the device
configuration space (Virtio device descriptor page).

After providing the virtio device description, the
guests starts using the device and the host is in charge
of attending and serving all the Virtio requests made
by the guest partitions.

Guest Virtio back-end:
Provides Virtio virtqueues support to the guest
partition, is also in charge of the discovery/removal
of the Virtio devices.

The device discovery and configuration is done as
usual on a bus (e.g. the PCI bus), by reading and writ-
ing the device configuration space (Virtio descriptor
page) which has been previously set by the host par-
tition.

Additionally the management of notifications of
Virtio device activity are performed by means of
XtratuM IPVI (Inter Partition Virtual Interrupts).

Virtio Transport modifications:
As stated before, Virtio initial assumptions do not
match XtratuM features, so the transport mechanism
has to be modified in order to share buffers.

Figure 6. Modified Virtio transport ring for
XtratuM.

In the case of XtratuM, partitions are granted spatial
isolation. Therefore, the buffers passed to the Virtio
ring belong to the guest partition memory map, and
are not accessible by the I/O partition. Thus, the Vir-
tio transport ring has been modified in order to copy
the scatterlists to a memory area shared between the
guest and the I/O partition. The resulting model has
been depicted on figure 6.

The shared memory area has to host buffers of un-
predictable but bounded sizes. This memory area is
managed by a dynamic memory allocator. To avoid
the fragmentation problem, the allocator only gives
blocks of pre-defined sizes, much like a slab alloca-
tor. Therefore, besides avoiding fragmentation prob-
lem, its simplicity allows giving buffers in constant
time.

7. Conclusions

In this paper we have presented the work done to pro-
vide device virtualisation to Linux guests running on the
XtratuM [3] hypervisor in the scope of the OVERSEE
project [5].

The presented approach is based on a I/O partition
that exclusively owns the hardware devices and performs
device virtualisation. The device virtualisation itself is
solved by using the virtual I/O device standard known
as Virtio [8] which provides “a series of efficient well-
maintained Linux drivers which can be adapted for vari-
ous hypervisor implementations”.

The assumptions that Virtio performs about how the
underlying hypervisor works are reviewed in order to de-
sign and achieve an efficient Virtio implementation on the
XtratuM hypervisor.



References

[1] Avionics Application Software Standard Interface (ARINC-
653), March 1996. Airlines Electronic Eng. Committee.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. SIGOPS Oper. Syst. Rev., 37:164–
177, October 2003.

[3] A. Crespo, I. Ripoll, M. Masmano, and S. Peiró. Parti-
tioned Embedded Architecture Based on Hypervisor: The
XtratuM Approach. In European Dependable Computing
Conference (EDCC), pages 67–72, 2010.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the Linux virtual machine monitor. In Ottawa Linux
Symposium, pages 225–230, July 2007.

[5] OVERSEE Project Consortium. OVERSEE Project: Open
Vehicular Secure Platform, December 2010. FP7-ICT-
2009-4. Project Id: 248333.

[6] PCI Special Interest Group. PCI Local Bus Specification:
Revision 3.0, March 29 2002.

[7] R. Russell. Lguest: A simple virtualization platform for
Linux, February 2008.

[8] R. Russell. virtio: towards a de-facto standard for virtual I/O
devices. SIGOPS Oper. Syst. Rev., 42:95–103, July 2008.

[9] R. Russell. Virtio PCI Card Specification v0.8.10 DRAFT,
October 2010.


	. Introduction
	. OVERSEE Platform Overview
	. Secure I/O Partition
	. System Partition
	. HMI, Audio Partition

	. XtratuM Overview
	. XtratuM Architecture
	. XtratuM Design Principles
	. Interrupt Model
	. Temporal Isolation

	. Para-virtualisation of Linux Partitions
	. IO Management on a Partitioned System

	. Virtio Overview
	. Virtio Devices
	. Virtio Drivers
	. Virtio Transport

	. Virtio on XtratuM Partitions
	. Virtio Design Assumptions
	. Virtio Implementation

	. Conclusions

